Preview

Сибирский журнал клинической и экспериментальной медицины

Расширенный поиск

Некодирующие РНК в диагностике пневмонии

https://doi.org/10.29001/2073-8552-2019-34-4-72-82

Полный текст:

Аннотация

Пневмония - тяжелое воспалительное заболевание, характеризующееся высокой смертностью во всем мире. Ранний диагноз внегоспитальной пневмонии и выявление вызвавшего ее инфекционного агента могут существенно снизить тяжесть ее течения и вероятность госпитализации пациента. Используемые на данный момент диагностические и прогностические методы не являются достаточно надежными, поэтому ряд специфических некодирующих РНК, циркулирующих в крови в составе внеклеточных везикул, рассматривают в последние годы как потенциальный биомаркер для дифференциации вирусных и бактериальных пневмоний, а также для предсказания осложнений и тяжести течения заболевания. В обзоре рассмотрены микроРНК, длинные некодирующие РНК и ксено-микроРНК, которые были предложены в качестве прогностических и диагностических маркеров, а также потенциальных тар-гетных препаратов при пневмонии.

Об авторах

С. В. Михайлова
Институт цитологии и генетики, Сибирское отделение Российская академия наук
Россия

Михайлова Светлана Владимировна - кандидат биологических наук, научный сотрудник, лаборатория молекулярной генетики человека.

630090, Новосибирск, пр. Академика Лаврентьева, 10



Д. Е. Иванощук
Институт цитологии и генетики, Сибирское отделение Российская академия наук
Россия

Иванощук Динара Евгеньевна - младший научный сотрудник, лаборатория молекулярной генетики человека.

630090, Новосибирск, пр. Академика Лаврентьева, 10



Е. В. Шахтшнейдер
Научно-исследовательский институт терапии и профилактической медицины — филиал Федерального государственного бюджетного научного учреждения Федеральный исследовательский центр Институт цитологии и генетики, Сибирское отделение Российская академия наук
Россия

Шахтшнейдер Елена Владимировна - кандидат медицинских наук, ведущий научный сотрудник, лаборатория молекулярно-генетических исследований терапевтических заболеваний.

630089,           Новосибирск, ул. Б. Богаткова, 175/1



Г. А. Степанов
Институт химической биологии и фундаментальной медицины, Сибирское отделение Российская академия наук
Россия

Степанов Григорий Александрович - кандидат биологических наук, заведующий лабораторией геномного редактирования.

630090,           Новосибирск, пр. Академика Лаврентьева, 8



А. С. Розанов
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Россия

Розанов Алексей Сергеевич - кандидат биологических наук, научный сотрудник, заведующий сектором генетики промышленных микроорганизмов.

630090, Новосибирск, пр. Академика Лаврентьева, 10



С. Е. Пельтек
Институт цитологии и генетики, Сибирское отделение Российская академия наук
Россия

Пельтек Сергей Евгеньевич - кандидат биологических наук, заведующий лабораторией молекулярных биотехнологий.

630090, Новосибирск, пр. Академика Лаврентьева, 10



М. И. Воевода
Научно-исследовательский институт терапии и профилактической медицины — филиал Федерального государственного бюджетного научного учреждения Федеральный исследовательский центр Институт цитологии и генетики, Сибирское отделение Российская академия наук
Россия

Воевода Михаил Иванович - доктор медицинских наук, профессор, академик РАН, руководитель научного направления фундаментальных и клинических исследований.

630089,           Новосибирск, ул. Б. Богаткова, 175/1



Список литературы

1. Moldoveanu B., Otmishi P., Jani P., Walker J., Sarmiento X., Guardi-ola J. et al. Inflammatory mechanisms in the lung. J. Inflamm. Res. 2009;2:1-11.

2. Arango Duque G., Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 2014;5:491. DOI: 10.3389/fimmu.2014.00491.

3. Zaas A.K., Garner B.H., Tsalik E.L., Burke T., Woods C.W., Ginsburg G.S. The current epidemiology and clinical decisions surrounding acute respiratory infections. Trends Mol. Med. 2014;20(10):579-588. DOI: 10.1016/j.molmed.2014.08.001.

4. Anevlavis S., Bouros D. Community acquired bacterial pneumonia. Expert Opinion on Pharmacotherapy. 2010;11(3):361-374. DOI: 10.1517/14656560903508770.

5. Karakioulaki M., Stolz D. Biomarkers in Pneumonia-Beyond Procalcitonin. Int. J. Mol. Sci. 2019;20(8):E2004. DOI: 10.3390/ijms20082004.

6. Self W.H., Balk R.A., Grijalva C.G., Williams D.J., Zhu Y, Anderson E.J. et al. Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia. Clin. Infect. Dis. 2017;65(2):183-190. DOI: 10.1093/cid/cix317.

7. Nascimento-Carvalho C.M. Community-acquired pneumonia among children: the latest evidence for an updated management. J. Pediatr. (Rio J.). 2019;S0021-7557(19)30493-0. DOI: 10.1016/j.jped.2019.08.003.

8. Choi S.H., Hong S.B., Ko G.B., Lee Y, Park H.J., Park S.Y et al. Viral infection in patients with severe pneumonia requiring intensive care unit admission. Am. J. Respir. Crit. Care Med. 2012;186(4):325-332. DOI: 10.1164/rccm.201112-2240OC.

9. Roberts T.C. The microRNA machinery. Adv. Exp. Med. Biol. 2015;887:15-30. DOI: 10.1007/978-3-319-22380-3_2.

10. Friedman R.C., Farh K.K.H., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92-105.

11. Zhao Y, Li H., Fang S., Kang Y, Wu W., Hao Y et al. Noncode 2016:An informative and valuable data source of long non-coding RNAs. Nucleic Acids Res. 2016;44:D203-D208. DOI: 10.1093/nar/gkv1252.

12. Ma L., Cao J., Liu L., Du Q., Li Z., Zou D. et al. LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res. 2019;47(5):2699. DOI: 10.1093/nar/gkz073.

13. Kogure T., Yan I.K., Lin W.L., Patel T. Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes. Cancer. 2013;4(7-8):261-272. DOI: 10.1177/1947601913499020.

14. Anfossi S., Babayan A., Pantel K., Calin G.A. Clinical utility of circulating non-coding RNAs - an update. Nat. Rev. Clin. Oncol. 2018;15(9):541-563. DOI: 10.1038/s41571-018-0035-x.

15. Fernandes J.C.R., Acuna S.M., Aoki J.I., Floeter-Winter L.M., Mux-el S.M. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA. 2019;5(1):E17. DOI: 10.3390/ncrna5010017.

16. Guiot J., Struman I., Louis E., Louis R., Malaise M., Njock M.S. Exoso-mal miRNAs in lung diseases: from biologic function to therapeutic targets. J. Clin. Med. 2019;8(9):E1345. DOI: 10.3390/jcm8091345.

17. Gilad S., Meiri E., Yogev Y, Benjamin S., Lebanony D., Yerushalmi N. et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):e3148. DOI: 10.1371/journal.pone.0003148.

18. Li Y, Zheng Q., Bao C., Li S., Guo W., Zhao J. et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981-984. DOI: 10.1038/cr.2015.82.

19. Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 2013;200(4):373-383. DOI: 10.1083/jcb.201211138.

20. Valadi H., Ekstrom K., Bossios A., Sjostrand M., Lee J.J., Lotvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9(6):654-659.

21. Yanez-Mo M., Siljander P.R., Andreu Z., Zavec A.B., Borras F.E., Bu-zas E.I. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell Vesicles. 2015;4:27066. DOI: 10.3402/jev.v4.27066.

22. Zhu Z., Zhang D., Lee H., Menon A.A., Wu J., Hu K. et al. Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222. J. Leukoc. Biol. 2017;101(6):1349-1359. DOI: 10.1189/jlb.3A1116-483R.

23. Lee H., Groot M., Pinilla-Vera M., Fredenburgh L.E., Jin Y. Identification of miRNA-rich vesicles in bronchoalveolar lavage fluid: Insights into the function and heterogeneity of extracellular vesicles. J. Control. Release. 2019;294:43-52. DOI: 10.1016/j.jconrel.2018.12.008

24. Arroyo J.D., Chevillet J.R., Kroh E.M., Ruf I.K., Pritchard C.C., Gibson D.F. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA. 2011;108(12):5003-5008. DOI: 10.1073/pnas.1019055108.

25. Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011;13(4):423-433. DOI: 10.1038/ncb2210.

26. Nonaka C.K.V., Macedo C.T., Cavalcante B.R.R., Alcantara A.C., Silva D.N., Bezerra M.D.R. et al. Circulating miRNAs as potential biomarkers associated with cardiac remodeling and fibrosis in chagas disease cardiomyopathy. Int. J. Mol. Sci. 2019;20(16):E4064. DOI: 10.3390/ijms20164064.

27. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-297. DOI: 10.1016/s0092-8674(04)00045-5.

28. Njock M.-S., Cheng H.S., Dang L.T., Nazari-Jahantigh M., Lau A.C., Boudreau E. et al. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood. 2015;125:3202-3212. DOI: 10.1182/blood-2014-11-611046.

29. Monsel A., Zhu Y, Gennai S., Hao Q., Hu S., Rouby J.-J. et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am. J. Respir. Crit. Care Med. 2015;192:324-336. DOI: 10.1164/rccm.201410-1765OC.

30. Abd-El-Fattah A.A., Sadik N.A., Shaker O.G., Aboulftouh M.L. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem. Biophys. 2013;67(3):875-884. DOI: 10.1007/s12013-013-9575-y.

31. Lin J., Wang Y, Zou YQ., Chen X., Huang B., Liu J. et al. Differential miR-NA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumour Biol. 2016;37(12):15835-15845. DOI: 10.1007/s13277-016-5410-6.

32. Huang S., Feng C., Zhai Y.Z., Zhou X., Li B., Wang L.L. et al. Identification of miRNA biomarkers of pneumonia using RNA-sequencing and bioinformatics analysis. Ex.p Ther. Med. 2017; 13(4):1235-1244. DOI: 10.3892/etm.2017.4151.

33. Poore G.D., Ko E.R., Valente A., Henao R., Sumner K., Hong C. et al. A miRNA host response signature accurately discriminates acute respiratory infection etiologies. Front. Microbiol. 2018;9:2957. DOI: 10.3389/fmicb.2018.02957.

34. Li Q.L., Wu Y.Y., Sun H.M., Gu W.J., Zhang X.X., Wang M.J. et al. The role of miR-29c/B7-H3/Th17 axis in children with Mycoplasma pneumoniae pneumonia. Ital. J. Pediatr. 2019;45(1):61. DOI: 10.1186/s13052-019-0655-5.

35. Jung A.L., Stoiber C., Herkt C.E., Schulz C., Bertrams W., Schmeck B. Legionella pneumophila-derived outer membrane vesicles promote bacterial replication in macrophages. PLoS Pathog. 2016;12(4):e1005592. DOI: 10.1371/journal.ppat.1005592.

36. Griss K., Bertrams W., Sittka-Stark A., Seidel K., Stielow C., Hippenstiel S. et al. MicroRNAs constitute a negative feedback loop in Streptococcus pneumoniae-induced macrophage activation. J. Infect. Dis. 2016;214(2):288-299. DOI: 10.1093/infdis/jiw109.

37. Wang Q., Li D., Han Y., Ding X., Xu T., Tang B. MicroRNA-146 protects A549 and H1975 cells from LPS-induced apoptosis and inflammation injury. J. Biosci. 2017;42(4):637-645. DOI: 10.1007/s12038-017-9715-4.

38. Gao W., Yang H. MicroRNA-124-3p attenuates severe community-acquired pneumonia progression in macrophages by targeting tumor necrosis factor receptor-associated factor 6. Int. J. Mol. Med. 2019;43(2):1003-1010. DOI: 10.3892/ijmm.2018.4011.

39. Guo J., Cheng Y. MicroRNA-1247 inhibits lipopolysaccharides-induced acute pneumonia in A549 cells via targeting CC chemokine ligand 16. Biomed. Pharmacother. 2018;104:60-68. DOI: 10.1016/j.bio-pha.2018.05.012.

40. Fei S., Cao L., Pan L. MicroRNA-3941 targets IGF2 to control LPS-induced acute pneumonia in A549 cells. Mol. Med. Rep. 2018;17(3):4019-4026. DOI: 10.3892/mmr.2017.8369.

41. Xie F., Yang L., Han L., Yue B. MicroRNA-194 regulates lipopolysac-charide-induced cell viability by inactivation of nuclear factor-к B pathway. Cell Physiol. Biochem. 2017;43(6):2470-2478. DOI: 10.1159/000484453.

42. Liu Z., Yu H., Guo Q. MicroRNA-20a promotes inflammation via the nuclear factor-кВ signaling pathway in pediatric pneumonia. Mol. Med. Rep. 2018;17(1):612-617. DOI: 10.3892/mmr.2017.7899.

43. Koriyama T., Yamakuchi M., Takenouchi K., Oyama Y., Takenaka H., Nagakura T. et al. Legionella pneumophila infection-mediated regulation of RICTOR via miR-218 in U937 macrophage cells. Biochem. Biophys. Res. Commun. 2019;508(2):608-613. DOI: 10.1016/j.bbrc.2018.11.093.

44. Ying H., Kang Y, Zhang H., Zhao D., Xia J., Lu Z. et al. MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J. Immunol. 2015;194(3):1239-1251. DOI: 10.4049/jimmunol.1402088.

45. Buggele W.A., Johnson K.E., Horvath C.M. Influenza A virus infection of human respiratory cells induces primary microRNA expression. J. Biol. Chem. 2012;287(37):31027-31040. DOI: 10.1074/jbc.M112.387670.

46. Liu Q., Du J., Yu X., Xu J., Huang F., Li X. et al. miRNA-200c-3p is crucial in acute respiratory distress syndrome. Cell Discov. 2017;3:17021. DOI: 10.1038/celldisc.2017.21.

47. Lee H., Zhang D., Zhu Z., Dela Cruz C.S., Jin Y. Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs. Sci. Rep. 2016;6:35250. DOI: 10.1038/srep35250.

48. Huang F., Zhang J., Yang D., Zhang Y, Huang J., Yuan Y et al. MicroRNA expression profile of whole blood is altered in Adenovirus-infected pneumonia children. Mediators Inflamm. 2018;2018:2320640. DOI: 10.1155/2018/2320640.

49. Huang F., Bai J., Zhang J., Yang D., Fan H., Huang L. et al. Identification of potential diagnostic biomarkers for pneumonia caused by adenovirus infection in children by screening serum exosomal microRNAs. Mol. Med. Rep. 2019;19(5):4306-4314. DOI: 10.3892/mmr.2019.10107.

50. Zhang W., Jia J., Liu Z., Si D., Ma L., Zhang G. Circulating microRNAs as biomarkers for Sepsis secondary to pneumonia diagnosed via Sepsis 3.0. BMC Pulm. Med. 2019;19(1):93. DOI: 10.1186/s12890-019-0836-4.

51. Du X., Wei J., Tian D., Wu M., Yan C., Hu P. et al. MiR-182-5p contributes to intestinal injury in a murine model of Staphylococcus aureus pneumonia-induced sepsis via targeting surfactant protein D. J. Cell Physiol. 2020;235(1):563-572. DOI: 10.1002/jcp.28995.

52. Wu X., Wu C., Gu W., Ji H., Zhu L. Serum exosomal microRNAs predict cute respiratory distress syndrome events in patients with severe community-acquired pneumonia. Biomed. Res. Int. 2019;2019:3612020. DOI: 10.1155/2019/3612020.

53. Chi X., Ding B., Zhang L., Zhang J., Wang J., Zhang W. lncRNA GAS5 promotes M1 macrophage polarization via miR-455-5p/SOCS3 pathway in childhood pneumonia. J. Cell Physiol. 2019;234(8):13242-13251. DOI: 10.1002/jcp.27996.

54. Zhou Z., Zhu Y, Gao G., Zhang Y. Long noncoding RNA SNHG16 targets miR-146a-5p/CCL5 to regulate LPS-induced WI-38 cell apoptosis and inflammation in acute pneumonia. Life Sci. 2019;228:189-197. DOI: 10.1016/j.lfs.2019.05.008.

55. Zhang Y, Zhu Y, Gao G., Zhou Z. Knockdown XIST alleviates LPS-induced WI-38 cell apoptosis and inflammation injury via targeting miR-370-3p/TLR4 in acute pneumonia. Cell Biochem. Funct. 2019;37(5):348-358. DOI: 10.1002/cbf.3392.

56. Liu M., Han T., Shi S., Chen E. Long noncoding RNA HAGLROS regulates cell apoptosis and autophagy in lipopolysaccharides-induced WI-38 cells via modulating miR-100/NF-KB axis. Biochem. Biophys. Res. Commun. 2018;500(3):589-596. DOI: 10.1016/j.bbrc.2018.04.109.

57. Meng J., Chen Y, Zhang C. Protective impacts of long noncoding RNA taurine-upregulated 1 against lipopolysaccharide-evoked injury in MRC-5 cells through inhibition of microRNA-127. J. Cell Biochem. 2019;120(9):14928-14935. DOI: 10.1002/jcb.28755.

58. Ritchie N.D., Evans T.J. Dual RNA-seq in Streptococcus pneumoniae infection reveals compartmentalized neutrophil responses in lung and pleural space. mSystems. 2019;4(4):e00216-19. DOI: 10.1128/mSys-tems.00216-19.

59. Sinha D., Zimmer K., Cameron T.A., Rusch D.B., Winkler M.E., De Lay N.R. Redefining the small regulatory RNA transcriptome in Streptococcus pneumoniae Serotype 2 Strain D39. J. Bacteriol. 2019;201(14):e00764-18. DOI: 10.1128/JB.00764-18.

60. Carroll R.K., Weiss A., Broach W.H., Wiemels R.E., Mogen A.B., Rice K.C. et al. Genome-wide annotation, identification, and global tran-scriptomic analysis of regulatory or small RNA gene expression in Staphylococcus aureus. MBio. 2016;7(1):e01990-15. DOI: 10.1128/mBio.01990-15.


Для цитирования:


Михайлова С.В., Иванощук Д.Е., Шахтшнейдер Е.В., Степанов Г.А., Розанов А.С., Пельтек С.Е., Воевода М.И. Некодирующие РНК в диагностике пневмонии. Сибирский журнал клинической и экспериментальной медицины. 2019;34(4):72-82. https://doi.org/10.29001/2073-8552-2019-34-4-72-82

For citation:


Mikhailova S.V., Ivanoshchuk D.E., Shakhtshneyder E.V., Stepanov G.A., Rozanov A.S., Peltek S.E., Voevoda M.I. Non-coding RNAs in pneumonia diagnosis. The Siberian Journal of Clinical and Experimental Medicine. 2019;34(4):72-82. (In Russ.) https://doi.org/10.29001/2073-8552-2019-34-4-72-82

Просмотров: 141


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)