Preview

Сибирский медицинский журнал

Расширенный поиск

МОДУЛЯЦИЯ СЕРДЕЧНОЙ СОКРАТИМОСТИ В ЛЕЧЕНИИ ПАЦИЕНТОВ С ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТЬЮ. ФУНДАМЕНТАЛЬНЫЕ МЕХАНИЗМЫ И РЕЗУЛЬТАТЫ КЛИНИЧЕСКОГО ПРИМЕНЕНИЯ

https://doi.org/10.29001/2073-8552-2019-34-2-26-32

Полный текст:

Аннотация

В настоящем обзоре представлены сведения об относительно новом электрофизиологическом методе лечения хронической сердечной недостаточности (ХСН) – модуляции сердечной сократимости (МСС), приводятся данные о его безопасности и эффективности. Предлагается обновленная информация о возможности МСС влиять на молекулярно-генетический аппарат кардиомиоцитов. В статье оцениваются перспективы применения метода как инструмента обратного ремоделирования миокарда у пациентов с ХСН.

Об авторах

И. А. Рябов
Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний
Россия

аспирант

650000, Российская Федерация, Кемерово, Сосновый б-р, 6



Т. Ю. Чичкова
Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний
Россия

научный сотрудник лаборатории нарушения ритма сердца и электрокардиостимуляции

650000, Российская Федерация, Кемерово, Сосновый б-р, 6



С. Е. Мамчур
Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний
Россия

д-р мед. наук, заведующий отделом диагностики сердечно-сосудистых заболеваний

650000, Российская Федерация, Кемерово, Сосновый б-р, 6



Е. А. Хоменко
Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний
Россия

канд. мед. наук, научный сотрудник лаборатории нарушения ритма сердца и электрокардиостимуляции

650000, Российская Федерация, Кемерово, Сосновый б-р, 6



Список литературы

1. Liu L., Eisen H.J. Epidemiology of Heart Failure and Scope of the Problem. Cardiol. Clin. 2014 Feb.;32(1):1–8. DOI: 10.1016/j.ccl.2013.09.009.

2. Savarese G., Lund L.H. Global public health burden of heart failure. Cardiac Fail. Rev. 2017 Apr.;3(1):7–11. DOI: 10.15420/cfr.2016:25:2.

3. Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M., et al. Heart disease and stroke statistics-2015 update: A report from the American Heart Association. Circulation. 2015;131(4):e29–e39. DOI: 10.1161/CIR.0000000000000152.

4. McMurray J.J.V., Adamopoulos S., Anker S.D., Auricchio A., Böhm M., Dickstein K., et al. Erratum: ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Eur. J. Heart Fail. 2013 Mar.;15(3):361–362.

5. Lloyd-Jones D., Adams R., Carnethon M., De Simone G., Ferguson T.B., Flegal K., et al. Heart disease and stroke statistics – 2009 update. A report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation. 2009 Jan. 27;119(3):480–486. DOI: 10.1161/CIRCULATIONAHA.108.191259.

6. Raftery E.B. Haemodynamic effects of diuretics in heart failure. Br. Heart J. 1994;72(2 Suppl.):S44–S47. DOI: 10.1136/hrt.72.2_Suppl.S44.

7. Ferrari L., Sada S. Efficacy of angiotensin–neprilysin inhibition versus enalapril in patient with heart failure with a reduced ejection fraction. Internal and Emergency Medicine. 2015 Apr.;10(3):369–371. DOI: 10.1007/s11739-014-1173-5.

8. Albert C.M., Chae C.U., Grodstein F., Rose L.M., Rexrode K.M., Ruskin J.N., et al. Prospective study of sudden cardiac death among women in the United States. Circulation. 2003 Apr.;107(16):2096–2101. DOI: 10.1161/01.CIR.0000065223.21530.11.

9. Packer D.L., Prutkin J.M., Hellkamp A.S., Mitchell L.B., Bernstein R.C., Wood F., et al. Impact of implantable cardioverter-defibrillator, amiodarone, and placebo on the mode of death in stable patients with heart failure: Analysis from the sudden cardiac death in heart failure trial. Circulation. 2009 Dec. 1;120(22):2170–2176. DOI: 10.1161/CIRCULATIONAHA.109.853689.

10. Cleland J.G.F., Daubert J.-C., Erdmann E., Freemantle N., Gras D., Kappenberger L., et al. Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase]. Eur. Heart J. 2006 Aug. 1;27(16):1928–1932. DOI: 10.1093/eurheartj/ehl099.

11. Steffel J., Robertson M., Singh J.P., Abraham W.T., Bax J.J., Borer J.S., et al. The effect of QRS duration on cardiac resynchronization therapy in patients with a narrow QRS complex: A subgroup analysis of the EchoCRT trial. Eur. Heart J. 2015 Aug. 7;36(30):1983–1989. DOI: 10.1093/eurheartj/ehv242.

12. Pappone C., Vicedomini G., Salvati A., Meloni C., Haddad W., Aviv R., et al. Electrical modulation of cardiac contractility: clinical aspects in congestive heart failure. Heart Failure Reviews. 2001 Jan.;6(1):55–60.

13. Pappone C., Rosanio S., Burkhof D., Mika Y., Vicedomini G., Augello G., et al. Cardiac contractility modulation by electric currents applied during the refractory period in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 2002;90(12):1307–1313. DOI: 10.1016/S0002-9149(02)02868-0.

14. Bers D.M. Macromolecular complexes regulating cardiac ryanodine receptor function. J. Mol. Cell. Cardiol. 2004;37(2):417–429. DOI: 10.1016/j.yjmcc.2004.05.026.

15. Mittmann C., Eschenhagen T., Scholz H. Cellular and molecular aspects of contractile dysfunction in heart failure. Cardiovasc. Res. 1998 Aug.;39(2):267‑275. DOI: 10.1016/S0008-6363(98)00139-4.

16. Periasamy M., Huke S. SERCA pump level is a critical determinant of Ca2+ homeostasis and cardiac contractility. J. Mol. Cell. Cardiol. 2001 Jun.;33(6):1053–1063. DOI: 10.1006/jmcc.2001.1366.

17. Currie S., Elliott E.B., Smith G.L., Loughrey C.M. Two candidates at the heart of dysfunction: The ryanodine receptor and calcium/calmodulin protein kinase II as potential targets for therapeutic intervention-An in vivo perspective. Pharmacol. Ther. 2011 Aug.;131(2):204–220. DOI: 10.1016/j.pharmthera.2011.02.006.

18. Imai M., Rastogi S., Gupta R.C., Mishra S., Sharov V.G., Stanley W.C., et al. Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. JACC. 2007;49(21):2120–2128. DOI: 10.1016/j.jacc.2006.10.082.

19. Gupta R.C., Mishra S., Rastogi S., Wang M., Rousso B., Mika Y., et al. Ca2+-binding proteins in dogs with heart failure: Effects of cardiac contractility modulation electrical signals. Clinical and Translational Science. 2009 Jun.;2(3):211–215. DOI: 10.1111/j.1752-8062.2009.00097.x.

20. Remppis A., Greten T., Schäfer B.W., Hunziker P., Erne P., Katus H.A., et al. Altered expression of the Ca2+-binding protein S100A1 in human cardiomyopathy. Biochim. Biophys. Acta. 1996;1313(3):253–257. DOI: 10.1016/0167-4889(96)00097-3.

21. Butter C., Rastogi S., Minden H.-H., Meyhöfer J., Burkhoff D., Sabbah H.N. Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure. JACC. 2008;51(18):1784–1789. DOI: 10.1016/j.jacc.2008.01.036.

22. Wahlquist C., Jeong D., Rojas-Muñoz A., Kho C., Lee A., Mitsuyama S., et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature. 2014;508(7497):531–535. DOI: 10.1038/nature13073.

23. Chen H., Liu S., Zhao C., Zong Z., Ma C., Qi G. Cardiac contractility modulation improves left ventricular systolic function partially via miR-25 mediated SERCA2A expression in rabbit transaortic constriction heart failure model. Journal of Thoracic Disease. 2018;10(6):3899–3908. DOI: 10.21037/jtd.2018.06.22.

24. De Tombe P.P. Cardiac myofilaments: Mechanics and regulation. J. Biomech. 2003;36(5):721–730. DOI: 10.1016/S0021-9290(02)00450-5.

25. Stix G., Borggrefe M., Wolpert C., Hindricks G., Kottkamp H., Böcker D., et al. FT Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur. Heart J. 2004;25(8):650–655. DOI: 10.1016/j.ehj.2004.02.027.

26. Borggrefe M.M., Lawo T., Butter C., Schmidinger H., Lunati M., Pieske B., et al. Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur. Heart J. 2008;29(8):1019–1028. DOI: 10.1093/eurheartj/ehn020.

27. Kadish A., Nademanee K., Volosin K., Krueger S., Neelagaru S., Raval N., et al. A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am. Heart J. 2011;161(2):329–337.e2. DOI: 10.1016/j.ahj.2010.10.025.

28. Abraham W.T., Nademanee K., Volosin K., Krueger S., Neelagaru S., Raval N., et al. Subgroup analysis of a randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. J. Card. Fail. 2011;17(9):710–717. DOI: 10.1016/j.cardfail.2011.05.006

29. Schau T., Seifert M., Meyhfer J., Neuss M., Butter C. Long-term outcome of cardiac contractility modulation in patients with severe congestive heart failure. Europace. 2011;13(10):1436–1444. DOI: 10.1093/europace/eur153.

30. Kuschyk J., Roeger S., Schneider R., Streitner F., Stach K., Rudic B., et al. Efficacy and survival in patients with cardiac contractility modulation: Long-term single center experience in 81 patients. Int. J. Cardiol. 2015;183(19592):76–81. DOI: 10.1016/j.ijcard.2014.12.178.

31. Kloppe A., Lawo T., Mijic D., Schiedat F., Muegge A., Lemke B. Longterm survival with cardiac contractility modulation in patients with NYHA II or III symptoms and normal QRS duration. Int. J. Cardiol. 2013;209:291–295. DOI: 10.1016/j.ijcard.2016.02.001.

32. Yu C.-M., Chan J.Y.-S., Zhang Q., Yip G.W.K., Lam Y.-Y., Chan A., et al. Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. JACC: Cardiovascular Imaging. 2009;2(12):1341–1349. DOI: 10.1016/j.jcmg.2009.07.011.

33. Мамчур С.Е., Хоменко Е.А., Чистюхин О.М., Бохан Н.С., Чичкова Т.Ю., Романова М.П., и др. Влияние модуляции сердечной сократимости на синхронизацию контрактильности и деформацию миокарда левого желудочка: пилотное исследование. Вестник аритмологии. 2018;93:24–29. DOI: 10.25760/VA-2018-93-24-29.

34. Heger J., Schulz R., Euler G. Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure. Br. J. Pharmacol. 2016;173(1):3–14. DOI: 10.1111/bph.13344.

35. Zhang Y., Huang X.-R., Wei L.-H., Chung A.C., Yu C.-M., Lan H.-Y. MiR-29b as a therapeutic agent for angiotensin ii-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Molecular Therapy. 2014;22(5):974–985. DOI: 10.1038/mt.2014.25.

36. Zhang F., Dang Y., Li Y., Hao Q., Li R., Qi X. Cardiac contractility modulation attenuate myocardial fibrosis by inhibiting TGF-β1/Smad3 signaling pathway in a rabbit model of chronic heart failure. Cellular Physiology and Biochemistry. 2016;39(1):294–302. DOI: 10.1159/000445624.

37. Fukuda N., Wu Y., Nair P., Granzier H.L. Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner. J. Gen. Physiol. 2005;125(3):257–271. DOI: 10.1085/jgp.200409177.

38. Rastogi S., Mishra S., Zacà V., Mika Y., Rousso B., Sabbah H.N. Effects of chronic therapy with cardiac contractility modulation electrical signals on cytoskeletal proteins and matrix metalloproteinases in dogs with heart failure. Cardiology. 2008;110(4):230–237. DOI: 10.1159/000112405.

39. Kötter S., Unger A., Hamdani N., Lang P., Vorgerd M., Nagel-Steger L., et al. Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins. J. Cell Biol. 2014;204(2):187–202. DOI: 10.1083/jcb.201306077.

40. Franssen C., Kole J., Musters R., Hamdani N., Paulus W.J. α-B crystallin reverses high diastolic stiffness of failing human cardiomyocytes. Circulation: Heart Failure. 2017;10(3):e003626. DOI: 10.1161/CIRCHEARTFAILURE.116.003626.

41. Tschöpe C., Van Linthout S., Spillmann F., Klein O., Biewener S., Remppis A., et al. Cardiac contractility modulation signals improve exercise intolerance and maladaptive regulation of cardiac key proteins for systolic and diastolic function in HfpEF. Int. J. Cardiol. 2016;203:1061–1066. DOI: 10.1016/j.ijcard.2015.10.208.


Для цитирования:


Рябов И.А., Чичкова Т.Ю., Мамчур С.Е., Хоменко Е.А. МОДУЛЯЦИЯ СЕРДЕЧНОЙ СОКРАТИМОСТИ В ЛЕЧЕНИИ ПАЦИЕНТОВ С ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТЬЮ. ФУНДАМЕНТАЛЬНЫЕ МЕХАНИЗМЫ И РЕЗУЛЬТАТЫ КЛИНИЧЕСКОГО ПРИМЕНЕНИЯ. Сибирский медицинский журнал. 2019;34(2):26-32. https://doi.org/10.29001/2073-8552-2019-34-2-26-32

For citation:


Ryabov I.A., Chichkova T.Y., Mamchur S.E., Khomenko E.A. CARDIAC CONTRACTILITY MODULATION IN HEART FAILURE PATIENTS. FUNDAMENTAL MECHANISMS AND CLINICAL RESULTS. The Siberian Medical Journal. 2019;34(2):26-32. (In Russ.) https://doi.org/10.29001/2073-8552-2019-34-2-26-32

Просмотров: 64


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-8552 (Print)