Preview

Сибирский журнал клинической и экспериментальной медицины

Расширенный поиск

Клиническое применение Т1-картирования миокарда: обзор литературы и первый опыт клинического применения

https://doi.org/10.29001/2073-8552-2022-37-1-17-26

Полный текст:

Аннотация

В представленной работе обобщены данные современных исследований о возможностях неинвазивной диагностики ткани миокарда, получившей широкое применение в клинической практике при диагностике различных нозологий. Измерение времени Т1 для дальнейшей количественной оценки фиброза миокарда, фракции внеклеточного объема позволяет заменить проведение пункционной биопсии миокарда. В статье приводятся данные количественных измерений, которые помогают оценить морфологию сердца у профессиональных спортсменов, динамику ремоделирования миокарда под воздействием физических нагрузок. 

Об авторах

М. С. Баев
Национальный медицинский исследовательский центр имени В.А. Алмазова Министерства здравоохранения Российской Федерации
Россия

врач-рентгенолог отделения магнитно-резонансной томографии, аспирант кафедры лучевой диагностики и медицинской визуализации Института медицинского образования, 

197341, Санкт-Петербург, ул. Аккуратова, 2



А. В. Рыжков
Национальный медицинский исследовательский центр имени В.А. Алмазова Министерства здравоохранения Российской Федерации
Россия

врач-рентгенолог, заведующий отделением магнитно-резонансной томографии, 

197341, Санкт-Петербург, ул. Аккуратова, 2



Е. А. Гаврилова
Северо-Западный государственный медицинский университет имени И.И. Мечникова Министерства здравоохранения Российской Федерации
Россия

д-р мед. наук, профессор, заведующий кафедрой лечебной физкультуры и спортивной медицины,

191015, Санкт-Петербург, ул. Кирочная, 41



Г. Е. Труфанов
Национальный медицинский исследовательский центр имени В.А. Алмазова Министерства здравоохранения Российской Федерации
Россия

д-р мед. наук, профессор, заведующий кафедрой лучевой диагностики и медицинской визуализации
Института медицинского образования, главный научный сотрудник НИО лучевой диагностики,

197341, Санкт-Петербург, ул. Аккуратова, 2



Список литературы

1. Терновой С.К. Томография сердца. М.: ГЭОТАР-Медиа; 2018: 296.

2. Шарыкин А.С., Бадтиева В.А., Трунина И.И., Османов И.М. Фиброз миокарда – новый компонент ремоделирования сердца у спортсменов? Кардиоваскулярная терапия и профилактика. 2019;18(6):126–135. DOI: 10.15829/1728-8800-2019-6-126-135.

3. Radenkovic D., Weingärtner S., Ricketts L., Moon J.C., Captur G. T1 mapping in cardiac MRI. Heart Fail. Rev. 2017;22(4):415–430. DOI: 10.1007/s10741-017-9627-2.

4. Sado D.M., White S.K., Piechnik S.K., Banypersad S.M., Treibel T., Captur G. et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ. Cardiovasc. Imaging. 2013;6:392–398. DOI: 10.1161/CIRCIMAGING.112.000070.

5. Higgins D.M., Moon J.C. Review of T1 mapping methods: Comparative effectiveness including reproducibility issues. Curr. Cardiovasc. Imaging Rep. 2014;7:9252. DOI: 10.1007/s12410-013-9252-y.

6. Görmeli C.A., Görmeli G., Yağmur J., Özdemir Z.M., Kahraman A.S., Çolak C. et al. Assessment of myocardial changes in athletes with native T1 mapping and cardiac functional evaluation using 3T MRI. Int. J. Cardiovasc. Imaging. 2016;32(6):975–981. DOI: 10.1007/s10554-016-0866-4.

7. Reiter G., Reiter C., Kräuter C., Fuchsjäger M., Reiter U. Cardiac magnetic resonance T1 mapping. Part 1: Aspects of acquisition and evaluation. Eur. J. Radiol. 2018;109:223–234. DOI: 10.1016/j.ejrad.2018.10.011.

8. Puntmann V., Nagel E. T1 and T2 mapping in nonischemic cardiomyopathies and agreement with endomyocardial biopsy. JACC. 2016;68(17):1923–1924. DOI: 10.1016/j.jacc.2016.06.075.

9. Piechnik S.K., Jerosch-Herold M. Myocardial T1 mapping and extracellular volume quantification: an overview of technical and biological confounders. Int. J. Cardiovasc. Imaging. 2017;34(1):3–14. DOI: 10.1007/s10554-017-1235-7.

10. Dabir D., Child N., Kalra A., Rogers T., Gebker R., Jabbour A. et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2014;16(1):69. DOI: 10.1186/s12968-014-0069-x.

11. Aus dem Siepen F., Buss S.J., Messroghli D., Andre F., Lossnitzer D., Seitz S. et al. T1 mapping in dilated cardio-myopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur. Heart J. Cardiovasc. Imaging. 2015;16(2):210–216. DOI: 10.1093/ehjci/jeu183.

12. Carrick D., Haig C., Rauhalammi S., Ahmed N., Mordi I., McEntegart M. et al. Prognostic significance of infarct core pathology revealed by quantitative non-contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST-elevation myocardial infarction sur vivors. Eur. Heart J. 2016;37(13):1044–1059. DOI: 10.1093/eurheartj/ehv372.

13. Rauhalammi S.M., Mangion K., Barrientos P.H., Carrick D.J., Clerfond G., McClure J. et al. Native myocardial longitudinal (T1) relaxation time: regional, age, and sex associations in the healthy adult heart. J. Magn. Reson. Imaging. 2016;44(3):541–548. DOI: 10.1002/jmri.25217.

14. Luetkens J.A., Homsi R., Sprinkart A.M., Doerner J., Dabir D., Kuetting D.L. et al. Incremental value of quantitative CMR including parametric mapping for the diagnosis of acute myocarditis. Eur. Heart J. Cardiovasc. Imaging. 2016;17(2):154–161. DOI: 10.1093/ehjci/jev246.

15. Goebel J., Seifert I., Nensa F., Schemuth H.P., Maderwald S., Quick H.H. et al. Can native T1 mapping differentiate between healthy and diffuse diseased myocardium in clinical routine cardiac MR imaging. PLoS One. 2016;11(5):e0155591. DOI: 10.1371/journal.pone.0155591.

16. Bulluck H., Bryant J.A., Tan J.Z., Go Y.Y., Le Th., Tan R.S. et al. Gender differences in native myocardial T1 in a healthy Chinese volunteer cohort. Cardiovasc. Imaging Asia. 2017;1(2):110–115. DOI: 10.22468/CVIA.2016.00129.

17. Nickander J., Lundin M., Abdula G., Sörensson P., Rosmini S., Moon J.C. et al. Blood correction reduces variability and gender differences in native myocardial T1 values at 1.5 T cardiovascular magnetic resonance – a derivation/validation approach. J. Cardiovasc. Magn. Reson. 2017;19(1):41. DOI: 10.1186/s12968-017-0353-7.

18. Rosmini S., Bulluck H., Captur G., Treibel T.A., Abdel-Gadir A., Bhuva A.N. et al. Myocardial native T1 and extracellular volume with healthy ageing and gender. Eur. Heart J. Cardiovasc. Imaging. 2018;19(6):615–621. DOI: 10.1093/ehjci/jey034.

19. Fontana M., White S.K., Banypersad S.M., Sado D.M., Maestrini V., Flett A.S. et al. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J. Cardiovasc. Magn. Reson. 2012;14(1):88. DOI: 10.1186/1532-429X-14-88.

20. Piechnik S.K., Ferreira V.M., Lewandowski A.J., Ntusi N.A., Banerjee R., Holloway C. et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J. Cardiovasc. Magn. Reson. 2013;15(1):13. DOI: 10.1186/1532-429X-15-13.

21. Ferreira V.M., Piechnik S.K., Robson M.D., Neubauer S., Karamitsos T.D. Myocardial tissue characterization by magnetic resonance imaging: novel applications of T1 and T2 mapping. J. Thorac. Imaging. 2014:29(3):147–154. DOI: 10.1097/RTI.0000000000000077.

22. Pica S., Sado D.M., Maestrini V., Fontana M., White S.K., Treibel T. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2014;16(1):99. DOI: 10.1186/s12968-014-0099-4.

23. Banypersad S.M., Fontana M., Maestrini V., Sado D.M., Captur G., Petrie A. et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur. Heart J. 2015;36(4):244–251. DOI: 10.1093/eurheartj/ehu444.

24. Sado D.M., Maestrini V., Piechnik S.K., Banypersad S.M., White S.K., Flett A.S. Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload. J. Magn. Reson. Imaging. 2015;41(6):1505–1511. DOI: 10.1002/jmri.24727.

25. Treibel T.A., Zemrak F., Sado D.M., Banypersad S.M., White S.K., Maestrini V. et al. Extracellular volume quantification in isolated hypertension – changes at the detectable limits. J. Cardiovasc. Magn. Reson. 2015;17(1):74. DOI: 10.1186/s12968-015-0176-3.

26. Von Knobelsdorff-Brenkenhoff F., Prothmann M., Dieringer M.A., Wassmuth R., Greiser A., Schwenke C. et al. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J. Cardiovasc. Magn. Reson. 2013;15(1):53. DOI: 10.1186/1532-429X-15-53.

27. Liu C.Y., Bluemke D.A., Gerstenblith G., Zimmerman S.L., Li J., Zhu H. et al. Reference values of myocardial structure, function, and tissue composition by cardiac magnetic resonance in healthy African-Americans at 3T and their relations to serologic and cardiovascular risk factors. Am. J. Cardiol. 2014;114(5):789–795. DOI: 10.1093/eurjcn/zvab060.032.

28. Roy C., Slimani A., de Meester C., Amzulescu M., Pasquet A., Vancraeynest D. et al. Age and sex corrected normal reference values of T1, T2 T2* and ECV in healthy subjects at 3T CMR. J. Cardiovasc. Magn. Reson. 2017;19(1):72. DOI: 10.1186/s12968-017-0371-5.

29. Dong Y., Yang D., Chen W., Cheng W., Sun J., Wan K. et al. Age and gender impact the measurement of myocardial interstitial fibrosis in a healthy adult chinese population: a cardiac magnetic resonance study. Front. Physiol. 2018;9:140. DOI: 10.3389/fphys.2018.00140.

30. Costello B.T., Springer F., Hare J.L., Gerche A., Iles L., Ellims A.H. et al. SASHA versus ShMOLLI: a comparison of T1 mapping methods in health and dilated cardiomyopathy at 3T. Int. J. Cardiovasc. Imaging. 2017;33(10):1551–1560. DOI: 10.1007/s10554-017-1134-y.

31. Haaf P., Garg P., Messroghli D.R., Broadbent D.A., Greenwood J.P., Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J. Cardiovasc. Magn. Reson. 2016;18:89–101. DOI: 10.1186/s12968-016-0308-4.

32. Piechnik S.K., Ferreira V.M., Dall’Armellina E., Cochlin L.E., Greiser A., Neubauer S. et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J. Cardiovasc. Magn. Reson. 2010;12(1):69. DOI: 10.1186/1532-429X-12-69.

33. Kellman P., Hansen M.S. T1-mapping in the heart: accuracy and precision. J. Cardiovasc. Magn. Reson. 2014;16(2):2. DOI: 10.1186/1532- 429X-16-2.

34. Messroghli D.R., Moon J.C., Ferreira V.M., Grosse-Wortmann L., He T., Kellman P. et al. Clinical recommendations for Cardiovascular Magnetic Resonance mapping of T1, T2, T2* and extracellular volume: А consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 2017;19:75. DOI: 10.1186/s12968-017-0389-8.

35. Nadjiri J., Nieberler H., Hendrich E., Greiser A., Will A., Martinoff S. et al. Performance of native and contrast-enhanced T1 mapping to detect myocardial damage in patients with suspected myocarditis: А head-tohead comparison of different cardiovascular magnetic resonance techniques. Int. J. Cardiovasc. Imaging. 2017;33(4):539–547. DOI: 10.1007/s10554-016-1029-3.

36. Lurz P., Luecke C., Eitel I., Föhrenbach F., Frank C., Grothoff M. et al. Comprehensive Cardiac Magnetic Resonance Imaging in Patients With Suspected Myocarditis: The MyoRacer-Trial. J. Am. Coll. Cardiol. 2016;67(15):1800–1811. DOI: 10.1016/j.jacc.2016.02.013.

37. Putko B.N., Wen K., Thompson R.B., Mullen J., Shanks M., Yogasundaram H. et al. Anderson-Fabry cardiomyopathy: Рrevalence, pathophysiology, diagnosis and treatment. Heart Fail. Rev. 2015;20(2):179–191. DOI: 10.1007/s10741-014-9452-9.

38. Kidambi A., Motwani M., Uddin A., Ripley D.P., McDiarmid A.K., Swoboda P.P. et al. Myocardial Extracellular Volume Estimation by CMR Predicts Functional Recovery Following Acute MI. JACC Cardiovasc. Imaging. 2017;10(9):989–999. DOI: 10.1016/j.jcmg.2016.06.015.

39. Ugander M., Bagi P.S., Oki A.J., Chen B., Hsu L.Y., Aletras A.H. et al. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc. Imaging. 2012;5(6):596–603. DOI: 10.1016/j.jcmg.2012.01.016.

40. Ruberg F.L. T1 mapping in cardiac amyloidosis: can we get there from here? JACC Cardiovasc. Imaging. 2013;6(4):498–500. DOI: 10.1016/j.jcmg.2013.01.007.

41. Pennell D.J., Udelson J.E., Arai A.E., Bozkurt B., Cohen A.R., Galanello R. et al. Cardiovascular function and treatment in β-thalassemia major: A consensus statement from the American Heart Association. Circulation. 2013;128(3):281–308. DOI: 10.1161/CIR.0b013e31829b2be6.

42. Torlasco C., Cassinerio E., Roghi A., Faini A., Capecchi M., Abdel-Gadir A. et al. Role of T1 mapping as a complementary tool to T2* for non-invasive cardiac iron overload assessment. PLoS One. 2018;13(2):e0192890. DOI: 10.1371/journal.pone.0192890.

43. Hinojar R., Foote L., Arroyo Ucar E., Jackson T., Jabbour A., Yu C.Y. et al. Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: А proposed diagnostic algorithm using CMR. JACC Cardiovasc. Imaging. 2015;8(1):37–46. DOI: 10.1371/journal.pone.0192890.

44. Barison A., Del Torto A., Chiappino S., Aquaro G.D., Todiere G., Vergaro G. et al. Prognostic significance of myocardial extracellular volume fraction in nonischaemic dilated cardiomyopathy. J. Cardiovasc. Med. (Hagerstown). 2015;16(10):681–687. DOI: 10.2459/jcm.0000000000000275.

45. Lu M., Zhao S., Yin G., Jiang S., Zhao T., Chen X. et al. T1 mapping for detection of left ventricular myocardial fibrosis in hypertrophic cardiomyopathy: А preliminary study. Eur. J. Radiol. 2013;82(5):e225–e231. DOI: 10.1016/j.ejrad.2012.12.014.

46. Kamal M.U., Riaz I.B., Janardhanan R. Cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy: Current state of the art. Cardiol. J. 2016;23(3):250–263. DOI: 10.5603/CJ.a2016.0019.

47. Swoboda P.P., McDiarmid A.K., Erhayiem B., Broadbent D.A., Dobson L.E., Garg P. et al. Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from athlete’s heart. J. Am. Coll. Cardiol. 2016;67(18):2189–2190. DOI: 10.5603/CJ.a2016.0019.

48. Singh A., Horsfield M.A., Bekele S., Khan J.N., Greiser A., McCann G.P. Myocardial T1 and extracellular volume fraction measurement in asymptomatic patients with aortic stenosis: reproducibility and comparison with age-matched controls. Eur. Heart J. Cardiovasc. Imaging. 2015;16(7):763–770. DOI: 10.1093/ehjci/jev007.

49. Chin C.W., Semple S., Malley T., White A.C., Mirsadraee S., Weale P.J. et al. Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis. Eur. Heart J. Cardiovasc. Imaging. 2014;15(5):556–565. DOI: 10.1093/ehjci/jet245.

50. Treibel T.A., Fontana M., Reant P., Espinosa M.A., Castelletti S., Herrey A.S. et al. T1 mapping in severe aortic stenosis: insights into LV remodeling. J. Cardiovasc. Magn. Reson. 2015;17(1):O89. DOI: 10.1186/1532-429X-17-S1-O89.

51. Bulluck H., Rosmini S., Abdel-Gadir A., White S.K., Bhuva A.N., Treibel T.A. et al. Automated extracellular volume fraction mapping provides insights into the pathophysiology of left ventricular remodeling post-reperfused ST-elevation myocardial infarction. J. Am. Heart Assoc. 2016;5(7):e003555. DOI: 10.1161/JAHA.116.003555.

52. Su M.Y., Lin L.Y., Tseng Y.H., Chang C.C., Wu C.K., Lin J.L. et al. CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc. Imaging. 2014;7(10):991–997. DOI: 10.1016/j.jcmg.2014.04.022.

53. McDiarmid A.K., Swoboda P.P., Erhayiem B., Lancaster R.E., Lyall G.K., Broadbent D.A. et al. Athletic cardiac adaptation in males is a consequence of elevated myocyte mass. Circ. Cardiovasc. Imaging. 2016;9(4):e003579. DOI: 10.1161/CIRCIMAGING.115.003579.

54. Thompson R.B., Chow K., Khan A., Chan A., Shanks M., Paterson I. et al. T1 mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ. Cardiovasc. Imaging. 2013;6(5):637–645. DOI: 10.1161/CIRCIMAGING.113.000482.

55. Hanneman K., Nguyen E.T., Thavendiranathan P., Ward R., Greiser A., Jolly M.P. et al. Quantification of myocardial extracellular volume fraction with cardiac MR imaging in thalassemia major. Radiology. 2016;279(3):720–730. DOI: 10.1148/radiol.2015150341.

56. Fontana M., Chung R., Hawkins P.N., Moon J.C. Cardiovascular magnetic resonance for amyloidosis. Heart Fail. Rev. 2015;20(2):133–144. DOI: 10.1007/s10741-014-9470-7.

57. Fontana M., Banypersad S.M., Treibel T.A., Abdel-Gadir A., Maestrini V., Lane T. et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: A cardiac MR imaging study. Radiology. 2015;277(2):388–397. DOI: 10.1148/radiol.2015141744.

58. Bohnen S., Radunski U.K., Lund G.K., Ojeda F., Looft Y., Senel M. et al. Tissue characterization by T1 and T2 mapping cardiovascular magnetic resonance imaging to monitor myocardial inflammation in healing myocarditis. Eur. Heart J. Cardiovasc. Imaging. 2017;18(7):744–751. DOI: 10.1093/ehjci/jex007.

59. Maestrini V., Torlasco C., Hughes R., Moon J.C. Cardiovascular magnetic resonance and sport cardiology: A growing role in clinical dilemmas. J. Cardiovasc. Transl. Res. 2020;13(3):296–305. DOI: 10.1007/s12265-020-10022-7.

60. Mitchell J.H., Haskell W.L., Raven P.B. Classification of sports. J. Am. Coll. Cardiol. 1994;24(4):864–866. DOI: 10.1016/0735-1097(94)90841-9.


Рецензия

Для цитирования:


Баев М.С., Рыжков А.В., Гаврилова Е.А., Труфанов Г.Е. Клиническое применение Т1-картирования миокарда: обзор литературы и первый опыт клинического применения. Сибирский журнал клинической и экспериментальной медицины. 2022;37(1):17-26. https://doi.org/10.29001/2073-8552-2022-37-1-17-26

For citation:


Baev M.S., Ryzhkov A.V., Gavrilova E.A., Trufanov G.E. Clinical application of T1-myocardial mapping: Review of literature and first experience of clinical application. The Siberian Journal of Clinical and Experimental Medicine. 2022;37(1):17-26. (In Russ.) https://doi.org/10.29001/2073-8552-2022-37-1-17-26

Просмотров: 252


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)