Preview

Сибирский журнал клинической и экспериментальной медицины

Расширенный поиск

Перспективы применения грудного молока в индивидуальной регенеративной медицине детского возраста

https://doi.org/10.29001/2073-8552-2021-36-2-30-35

Полный текст:

Аннотация

Обзор литературы посвящен анализу перспектив использования грудного молока в неонатологии, педиатрии и детской кардиологии для оптимизации постнатального роста и развития детей, рожденных недоношенными.

Об авторах

М. В. Колосова
Сибирский государственный медицинский университет Министерства здравоохранения Российской Федерации
Россия

Колосова Марина Владимировна, д-р мед. наук, профессор кафедры детских болезней

634050, Российская Федерация, Томск, Московский тракт, 2



Е. Н. Павлюкова
Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук
Россия

Павлюкова Елена Николаевна, д-р мед. наук, профессор, заведующий отделением атеросклероза и хронической ишемической болезни сердца

634012, Российская Федерация, Томск, ул. Киевская, 111а



Г. В. Неклюдова
Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук
Россия

Неклюдова Галина Владимировна, аспирант, Научно-исследовательский институт кардиологии

634012, Российская Федерация, Томск, ул. Киевская, 111а



Р. С. Карпов
Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук
Россия

Карпов Ростислав Сергеевич, д-р мед. наук, профессор, академик РАН, научный руководитель

634012, Российская Федерация, Томск, ул. Киевская, 111а



Список литературы

1. Корсаков И.Н., Наделяева И.И., Еремин И.И., Пулин А.А., Котенко К.В., Зорин В.Л. Анализ рынка продуктов регенеративной медицины. Гены и клетки. 2017;12(1):72–89. DOI: 10.23868/201703010.

2. Bardelli S., Moccetti M. Stem Cell banking and its impact on cardiac regenerative medicine. Adv. Exp. Med. Biol. 2016;951:163–178. DOI: 10.1007/978-3-319-45457-3_14.

3. Lewandowski A.J., Lamata P., Francis J.M., Piechnik S.K., Ferreira V.M., Boardman H. et al. Breast milk consumption in preterm neonates and cardiac shape in adulthood. Pediatrics. 2016;138(1):e20160050. DOI: 10.1542/peds.2016-0050.

4. Haschke F., Haiden N., Thakkar S.K. Nutritive and bioactive proteins in breastmilk. Ann. Nutr. Meta. 2016;69(2):16–26. DOI: 10.1159/000452820.

5. Kaingade P.M., Somasundaram I., Nikam A.B., Sarang S.A., Patel J.S. Breastmilk-derived mesenchymal stem cells in vitro are likely to be mediated through epithelial–mesenchymal transition. Breastfeeding Med. 2016;11(3):152–152. DOI: 10.1089/bfm.2016.0023.

6. Ballard O., Morrow A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. North. Am. 2013;60(1):49–74. DOI: 10.1016/j.pcl.2012.10.002.

7. Zhou N., Wang Y., Cheng W., Yang Z. Hepatocyte growth factor (HGF) promotes cardiac stem cell differentiation after myocardial infarction by increasing mTOR activation in p27 kip haploinsufficient mice. Genes & Genomics. 2015;37(11):905–912. DOI: 10.1007/s13258-015-0320-3.

8. Castellote C., Casillas R., Ramírez-Santana C., Pérez-Cano F.J., Castell M., Moretones M.G. et al. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J. Nutr. 2011;141(6):1181–1187. DOI: 10.3945/jn.110.133652.

9. Siafakas C.G., Anatolitou F., Fusunyan R.D., Walker W.A., Sanderson I.R. Vascular endothelial growth factor (VEGF) is present in human breast milk and its receptor is present on intestinal epithelial cells. Pediatr. Res. 1999;45(5–1):652–657. DOI: 10.1203/00006450-199905010-00007.

10. Ligi I., Simoncini S., Tellier E., Vassallo P.F., Sabatier F., Guillet B. et al. A switch toward angiostatic gene expression impairs the angiogenic properties of endothelial progenitor cells in low birth weight preterm infants. Blood. 2011;118(6):1699–1709. DOI: 10.1182/blood-2010-12-325142.

11. Fanos V. Metabolomics, milk-oriented microbiota (MOM) and multipotent stem cells: The future of research on breast milk. JPNIM. 2015;4(1):e040115. DOI: 10.7363/040115.

12. Demmelmair H., Koletzko B. Variation of metabolite and hormone contents in human milk. Clin. Perinatol. 2017;44(1):151–164. DOI: 10.1016/j.clp.2016.11.007.

13. Gridneva Z., Kugananthan S., Rea A., Lai C.T., Ward L.C., Murray K. et al. Human milk adiponectin and leptin and infant body composition over the first 12 months of lactation. Nutrients. 2018;10(8):1125. DOI: 10.3390/nu10081125.

14. Ninkina N., Kukharsky M.S., Hewitt M.V., Lysikova E.A., Skuratovska L.N., Deykin A.V. et al. Stem cells in human breast milk. Hum. Cell. 2019;32(3):223–230. DOI: 10.1007/s13577-019-00251-7.

15. Faa G., Fanos V., Puddu M., Reali A., Dessì A., Pichiri G. et al. Breast milk stem cells: Four questions looking for an answer. JPNIM. 2016;5(2):e050203. DOI: 10.7363/050203.

16. Faa G., Fanos V., Giordano A. Past and future of stem cells: from Prometheus to regenerative medicine. JPNIM. 2016;5(2):e050234. DOI: 10.7363/050234.

17. Li S., Zhang L., Zhou Q., Jiang S., Yang Y., Cao Y. Characterization of stem cells and immune cells in preterm and term mother’s milk. J. Hum. Lact. 2019;35(3):528–534. DOI: 10.1177/0890334419838986.

18. Tang C., Lu C., Ji X., Ma L., Zhou Q., Xiong M. et al. Generation of two induced pluripotent stem cell (iPSC) lines from human breast milk using episomal reprogramming system. Stem Cell Res. 2019;39:101511. DOI: 10.1016/j.scr.2019.101511.

19. Hilton S. Breast milk breaks new boundaries. Pract. Midwife. 2012;5(7):37–39.

20. Twigger A.J., Hepworth A.R., Lai C.T., Chetwynd E., Stuebe A.M., Blancafort P. et al. Gene expression in breastmilk cells is associated with maternal and infant characteristics. Sci. Rep. 2015;(5):12933. DOI: 10.1038/srep12933.

21. Peterson M.B. The presence of stem cells in human breast milk and research implications. In book: Senior Honors Thesis, 2016. URL: https://digitalcommons.liberty.edu/honors/582.

22. Thomas E., Lee-Pullen T., Rigby P., Hartmann P., Xu J., Zeps N. Receptor activator of NF-κB ligand promotes proliferation of a putative mammary stem cell unique to the lactating epithelium. Stem Cells. 2012;30(6):1255–1264. DOI: 10.1002/stem.1092.

23. Pacheco C.M.R., Ferreira P.E., Saçaki C.S., Tannous L.A., Zotarelli- Filho I.J., Guarita-Souza L.C. et al. In vitro differentiation capacity of human breastmilk stem cells: A systematic review. World J. Stem Cells. 2019;11(11):1005–1019. DOI: 10.4252/wjsc.v11.i11.1005.

24. Valverde-Villegas J.M., Durand M., Bedin A.S., Rutagwera D., Kankasa C., Tuaillon E. et al. Large stem/progenitor-like cell subsets can also be identified in the CD45-and CD45+/high populations in early human milk. J. Hum. Lact. 2020;36(2):303–309. DOI: 10.1177/0890334419885315.

25. Gebauer C.M., Thome U.H. What is new in infant nutrition? In book: Innovations and Frontiers in Neonatology. Pediatr. Adolesc. Med. Herting E., Kiess W. (eds.); vol. 22. Basel, Karger; 2020:123–132. DOI: 10.1159/000495439.

26. Калинина Н.И., Сысоева В.Ю., Рубина К.А., Парфенова Е.В., Ткачук В.А. Мезенхимальные стволовые клетки в процессах роста и репарации тканей. Acta Naturae. 2011;3(4):32–39.

27. Владимирская Е.Б. Мезенхимальные стволовые клетки (МСК) в клеточной терапии. Онкогематология. 2007;1:4–16.

28. Samsonraj R.M., Raghunath M., Nurcombe V., Hui J.H., van Wijnen A.J., Cool S.M. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl. Med. 2017;6(12):2173–2185. DOI: 10.1002/sctm.17-0129.

29. Kakulas F. Breast milk: A source of stem cells and protective cells for the infant. Infant 2015;11(6):187–191.

30. Hassiotou F., Beltran A., Chetwynd E., Stuebe A.M., Twigger A.J., Metzger P. et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells. 2012;30(10):2164–2174. DOI: 10.1002/stem.1188.

31. Reali A., Puddu M., Pintus M.C., Marcialis M.A., Pichiri G., Coni P. et al. Multipotent stem cells of mother’s milk. JPNIM. 2016;5(1):e050103. DOI: 10.7363/050103.

32. Hassiotou F., Hepworth A.R., Williams T.M., Twigger A.J., Perrella S., Lai C.T. et al. Breastmilk cell and fat contents respond similarly to removal of breastmilk by the infant. PLoS One. 2013;8(11):e78232. DOI: 10.1371/journal.pone.0078232.

33. Abd Allah S.H., Shalaby S.M., El-Shal A.S., El Nabtety S.M., Khamis T., Abd El Rhman S.A. et al. Breast milk MSCs: An explanation of tissue growth and maturation of offspring. IUBMB Life. 2016;68(12):935–942. DOI: 10.1002/iub.1573.

34. Briere C.E., Jensen T., McGrath J.M., Young E.E., Finck C. Stem-like cell characteristics from breast milk of mothers with preterm infants as compared to mothers with term infants. Breastfeed Med. 2017;12:174–179. DOI: 10.1089/bfm.2017.0002.

35. Witkowska-Zimny M., Kaminska-El-Hassan E. Cells of human breast milk. Cell. Mol. Biol. Lett. 2017;22:11. DOI: 10.1186/s11658-017-0042-4.

36. Hassiotou F. Breastmilk imparts the mother’s stem cells to the infant: boosting early infant development? Medela’s 10th Breastfeeding and Lacatation Symposium, 2015:2.

37. Aydın M.Ş., Yiğit E.N., Vatandaşlar E., Erdoğan E., Öztürk G. Transfer and integration of breast milk stem cells to the brain of suckling pups. Sci. Rep. 2018;8(1):14289. DOI: 10.1038/s41598-018-32715-5.

38. Gephart S.M., Newnam K.M. Closing the gap between recommended and actual human milk use for fragile infants: What will it take to overcome disparities? Clin. Perinatol. 2019;46(1):39–50. DOI: 10.1016/j.clp.2018.09.003.

39. Sani M., Ebrahimi S., Aleahmad F., Salmannejad M., Hosseini S.M., Mazarei G. et al. Differentiation potential of breast milk-derived mesenchymal stem cells into hepatocyte-like cells. Tissue Eng. Regen. Med. 2017;14(5):587–593. DOI: 10.1007/s13770-017-0066-x.

40. Erliana U.D., Fly A.D. The function and alteration of immunological properties in human milk of obese mothers. Nutrients. 2019;11(6):1284. DOI: 10.3390/nu11061284.

41. Tan G., Shim W., Gu Y., Qian L., Chung Y.Y., Lim S.Y. et al. Differential effect of myocardial matrix and integrins on cardiac differentiation of human mesenchymal stem cells. Differentiation. 2010;79(4–5):260–271. DOI: 10.1016/j.diff.2010.02.005.

42. Cornelissen A.S., Maijenburg M.W., Nolte M.A., Voermans C. Organ- specific migration of mesenchymal stromal cells: Who, when, where and why? Immunol. Lett. 2015;168(2):159–169. DOI: 10.1016/j.imlet.2015.06.019.

43. Lushaj E.B., Anstadt E., Haworth R., Roenneburg D., Kim J., Hematti P. et al. Mesenchymal stromal cells are present in the heart and promote growth of adult stem cells in vitro. Cytotherapy. 2011;13(4):400–406. DOI: 10.3109/14653249.2010.529890.

44. Szaraz P., Gratch Y.S., Iqbal F., Librach C.L. In vitro differentiation of human mesenchymal stem cells into functional cardiomyocyte-like cells. J. Vis. Exp. 2017;(126):55757. DOI: 10.3791/55757.

45. Brychtova M., Thiele J.A., Lysak D., Holubova M., Kralickova M., Vistejnova L. Mesenchymal stem cells as the near future of cardiology medicine – truth or wish? Biomed. Pap. Med. Fac. Palacky Olomouc. Czech. Repub. 2019;163(1):8–18. DOI: 10.5507/bp.2018.071.

46. Wagner C.L. The impact of technological advances on our understanding of the dynamic nature of human milk cells: A commentary about “Characterization of stem cells and immune cells in preterm and term mother’s milk” (Li et al., 2019). J. Hum. Lact. 2019;35(3):535–537. DOI: 10.1177/0890334419851489.

47. Kraft J. Exosome protein diversity is greater in preterm milk than term milk. In book: Thesis. Canada: Department of Biochemistry, Microbiology & Immunology Faculty of Medicine University of Ottawa; 2019:119. DOI: 10.20381/ruor-23256.

48. Panfoli I., Ravera S., Podestà M., Cossu C., Santucci L., Bartolucci M. et al. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants. FASEB J. 2016;30(4):1416–1424. DOI: 10.1096/fj.15-279679.

49. Section on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics. 2012;129(3):e827–841. DOI: 10.1542/peds.2011-3552.

50. Mizuno K., Sakurai M., Itabashi K. Necessity of human milk banking in Japan: Questionnaire survey of neonatologists. Pediatr. Int. 2015;57(4):639–644. DOI: 10.1111/ped.12606.

51. Программа оптимизации вскармливания детей первого года жизни в Российской Федерации: методические рекомендации. М.: ФГАУ «НМИЦ здоровья детей» Минздрава России; 2019:112.

52. Landers S., Hartmann B.T. Donor human milk banking and the emergence of milk sharing. Pediatr. Clin. North. Am. 2013;60(1):247–260. DOI: 10.1016/j.pcl.2012.09.009.

53. Updegrove K. Nonprofit human milk banking in the United States. J Midwifery Womens Health. 2013;58(5):502–508. DOI: 10.1111/j.1542-

54. 2012.00267.x.

55. Verduci E., Giannì M.L., Di Benedetto A. Human milk feeding in preterm infants: What has been done and what is to be done. Nutrients. 2019;12(1):44. DOI: 10.3390/nu12010044.

56. Sun H., Han S., Cheng R., Hei M., Kakulas F., Lee S.K. Testing the feasibility and safety of feeding preterm infants fresh mother’s own milk in the NICU: A pilot study. Sci Rep. 2019;9(1):941. DOI: 10.1038/s41598-018-37111-7.

57. Hosseini S.M., Talaei-Khozani T., Sani M., Owrangi B. Differentiation of human breast-milk stem cells to neural stem cells and neurons. Neurol. Res. Int. 2014;2014:807896. DOI: 10.1155/2014/807896.

58. Underwood M.A. Human milk for the premature infant. Pediatr. Clin. North. Am. 2013;60(1):189–207. DOI: 10.1016/j.pcl.2012.09.008.

59. Yin S.D. Fetus breastmilk-breastfeeding-infant-cells cycle: fetus-to-infant his/her own fetal cell external transmission via breastfeeding. J. Theoretical Fimpology. 2013;1(1):e-20120612-2.

60. Joo H.S., Suh J.H., Lee H.J., Bang E.S., Lee J.M. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int. J. Mol. Sci. 2020;21(3):727. DOI: 10.3390/ijms21030727.

61. Brown K.S., Rao M.S., Brown H.L. The future state of newborn stem cell banking. J. Clin. Med. 2019;8(1):117. DOI: 10.3390/jcm8010117.


Для цитирования:


Колосова М.В., Павлюкова Е.Н., Неклюдова Г.В., Карпов Р.С. Перспективы применения грудного молока в индивидуальной регенеративной медицине детского возраста. Сибирский журнал клинической и экспериментальной медицины. 2021;36(2):30-35. https://doi.org/10.29001/2073-8552-2021-36-2-30-35

For citation:


Kolosova M.V., Pavlyukova E.N., Neklyudova G.V., Karpov R.S. Prospects for the use of breast milk in individual regenerative medicine of childhood age. The Siberian Journal of Clinical and Experimental Medicine. 2021;36(2):30-35. (In Russ.) https://doi.org/10.29001/2073-8552-2021-36-2-30-35

Просмотров: 19


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)